Please wait while the search results are loading...

Alternative & Renewable Energy Business Trends Analysis, Business and Industry Trends Analysis

¹ Video Tip

For our brief video introduction to the Alternative Energy industry, see .


Analysts at BP report that non-hydroelectric renewable power consumption grew by a respectable 12.0% worldwide during 2014 (the latest year for which data is available).  North American consumption increased by a substantial 10.0%.

World hydroelectric consumption increased by 2.0% during 2014.  North American hydroelectric consumption decreased by 1.7%, after a 0.3% increase in the U.S. during a below-average year due to droughts.

Steady growth does not mean that renewables account for a large amount of the world’s energy.  Instead, non-hydroelectric renewables as a percent of global electricity generation accounted for about 6.0% in 2014, up from 5.3% in 2013.  Coal, natural gas and nuclear energy remain primary sources of electric generation in most parts of the world.

U.S. electric production from renewable sources was 13.2% of total electric power in 2014, up from 12.2% in 2013 and only about 7.6% in 1970.  In this case, “renewable” includes conventional hydroelectric and geothermal, along with solar, wind and biomass.  (In 1970, such production was almost entirely from hydroelectric sources.)

Wind power has seen rapid growth worldwide.  Major technological advances in wind turbines (including much larger blades creating very high output per turbine and blades that suffer very little downtime and are thus more efficient), along with massive government incentives encouraging investment in wind generation, have fueled turbine installation.  In the U.S., wind power generation grew dramatically, from 11,187 thousand megawatts in 2003 to 94,652 thousand in 2010 and approximately 107,508 thousand during 2015.  (The 2015 figure is for a rolling 12-month period that ended in July.)

The Global Wind Energy Council estimated total wind generation capacity worldwide at 369,597 megawatts in 2014, and forecast it to climb to 666,100 megawatts in 2019.  As of October 2015, U.S. wind capacity was 69,471 megawatts, more than 13 times higher than it was in 2000.

Solar power is enjoying significant technological innovation.  The important factors in solar are the percent of captured solar energy that is converted into electricity (which is climbing), and the cost per installed watt of potential output (which is declining).  The use of polymers has led to exciting, flexible solar panels, while nanotechnology is creating breakthroughs in solar technology as well.  Analysts at BP report that installed global solar photovoltaic capacity was 4,184 megawatts at the end of 2005 within the IEA Photovoltaic Power System Program Member Countries.  By 2011, that number had soared to 71,304 megawatts, and in 2014 it surged ahead to 180,396 megawatts.  Biomass energy (including the use of energy from waste, such as wood chips and landfills, and the production of bioethanol) has also grown rapidly over the long term, both in the U.S. and elsewhere.

As for nuclear power, both expensive to build and controversial, the construction of new nuclear generating plants is accelerating rapidly in China, where demand for electricity is booming and dozens of new nuclear plants are planned.  Several new plants are also planned or underway in the UAE, India and South Korea.  The UK plans two new plants as well.  Nuclear provides an emission-free alternative to solar and wind, and is reliable 24 hours-a-day.

It should be noted that the use of renewable sources does not always mean clean power generation.  For example, burning wood or trash for energy under the wrong conditions can create significant pollution.  Also, the clearing of land, such as forests, for planting of biomass to be used in ethanol or biodiesel refining can be highly destructive to the environment while creating huge quantities of carbon emissions.  In addition, many types of renewable energy production require vast quantities of water.  These trade-offs continue to create significant debate and controversy.

In the U.S., emphasis on alternative energy and conservation has a varied history.  The 1973 oil trade embargo staged by Persian Gulf producers greatly limited the supply of petroleum on the market and created an instant interest in energy conservation.  Thermostats were turned to more efficient levels, solar water heating systems sprouted on the rooftops of American homes (including a system that was used for a few years at the White House) and tax credits were launched by various government agencies to encourage investment in more efficient systems in buildings and factories that would utilize less oil, gasoline and electricity.  Meanwhile, American motorists crawled through lengthy lines at filling stations, trying to top off their tanks during the horrid days of gasoline rationing.

While some consumers maintained a keen, long term interest in alternative energy from an environmentally friendly point of view, most Americans quickly forgot about energy conservation when the price of gasoline plummeted during the 1980s and 1990s.  Gasoline prices as low as 99 cents per gallon were common for many years.  As advancing technology made oil production and electricity generation much more efficient, a low commodity price trend kept market prices under control.  As a result, Americans returned to ice-cold air-conditioned rooms and purchased giant, gas-guzzling SUVs, motor homes and motorboats.  The median newly constructed American single-family home built in 1972 contained 1,520 square feet; by the third quarter of 2015 it contained 2,445 square feet.  More square footage means more lights, air conditioning and heating systems to power.  Meanwhile, federal and state regulators made efforts to force automobile engines and industrial plants to operate in clean-air mode, largely through the use of advanced technologies, while requiring gasoline refiners to adopt an ever-widening web of additives and standards that would create cleaner-burning fuels.

Fortunately, the first energy crisis in the early 1970s did lead to the use of technology to create significant efficiencies in many areas.  For example, prior to that time, as much as 40% of a typical household’s natural gas consumption was for pilot lights burning idly in case a stove or furnace was needed.  Today, electric pilots create spark ignition on demand.  Likewise, today’s refrigerators use about 70% less electricity than models built in 1970.  Many other appliances and electrical devices have become much more efficient, through better design and engineering, better insulation, more efficient motors, efficient lightning and smarter building controls.  While the number of electricity-burning personal computers proliferated, computer equipment makers rapidly adopted energy-saving PC technologies.

Renewable energy sources, cleaner-burning fuels, fuel-efficient automobiles, as well as homes and buildings that utilize energy-efficient materials and controls are of great appeal to the large number of consumers worldwide who have developed a true interest in sustainability or in protecting the environment.  For example, surveys have shown that many consumers are willing to pay somewhat more for electricity if they know it is coming from non-polluting, renewable sources.  Nonetheless, the vast, recent drops in the market prices of oil and natural gas pose a significant challenge to alternative and renewable energy sources on a purely economic basis.

Hybrid gasoline-electric automobiles made by Toyota, Honda and others are selling reasonably well in the U.S. and elsewhere.  Ford has adopted aluminum as a primary metal for its popular F150 pickup trucks, savings hundreds of pounds in weight per truck and dramatically increasing fuel efficiency.  Fuel cell-powered automobiles are now coming on the market in limited quantities.

Meanwhile, many municipalities, such as the city of Seattle, Washington, have invested in buses and other vehicles that are hybrids or run on natural gas.  Plug-in hybrid electric vehicles, and fully electric cars, are on the market worldwide, but sales are relatively slow due to high prices and limited range.  Better, cheaper batteries are needed to boost this sector.

Alternative energy and energy-efficient technologies continue to attract strong interest from investors.  Likewise, national governments are helping to fund many energy efficiency projects, ranging from fuel cell research to the design and development of high-efficiency buildings, although these government-backed efforts sometimes lead to very costly, very disappointing failures.

Legislation at state and national levels will continue to boost renewable energy development and conservation technologies on a global basis.  In the U.S., governments in more than one-half of the 50 states have passed stringent legislation requiring that an ever-growing percentage of electric generation comes from renewable means.

Technologies with a reliable return on investment, such as hydroelectric, remain extremely desirable.  Conservation through advanced materials and technologies, such as retrofitting existing buildings with more efficient windows, insulation and air conditioning, is growing, and a good return on investment and an increase in property values are typical results.  Alternative oil sources, such as oil sands and oil shale, harbor vast potential reserves, but they are a challenge to produce at reasonable prices per barrel of oil equivalent.

Bioethanol and biodiesel, from an economic and environmental point of view, are questionable at the least, and extremely misdirected at the worst.  Some production of bioethanol appears very efficient, particularly in Brazil where easily-grown sugar cane is the feedstock.  However, in the U.S., the diversion of corn and soy from the food chain to the energy chain for ethanol or biodiesel may be a very bad idea from a wide variety of measures.  Advanced technologies that capture carbon dioxide and utilize it to grow oil-producing algae appear to be a promising alternative source for oil, but much research and development remains to be done in this area, and costs remain high.

At least two geothermal energy projects, where deep holes are drilled to tap the high temperatures of the inner Earth, have recently been cancelled due to concerns that these activities cause earthquakes.  Tidal energy looks promising, but both installation costs and maintenance remain huge obstacles.  Nonetheless, technologies are advancing rapidly in this field, and many test projects are underway or in place.

The bottom line is that many types of renewable energy production simply cannot exist without substantial government investments, incentives, loans and/or tax breaks.  Hydroelectric is a rare exception, as it produces power at very low cost.  In nearly all other cases, the largest projects (utility-scale) based on solar, wind or wave power can only be funded through high levels of government support.  Consumers of such power will pay much higher rates for electricity, either directly through their power bills or indirectly through their taxes.  It remains to be seen whether technologies in these fields can advance to the point that these renewable power sources can become economically viable on a self-sustaining basis.

Smaller-scale, rooftop solar power installations have become extremely popular in sunny climates in the U.S. and elsewhere.  The cost of solar cells has plummeted to the point that solar power produced at homes and commercial buildings is becoming economically viable after government incentives are factored in.  While the solar cells themselves are now relatively cheap, installation remains costly.  Meanwhile, solar cells require regular maintenance, and their efficiency degrades steadily as they age in place.  The exceptionally high investment required, along with a lack of further federal loan guarantees, means that new projects for extremely large, utility-scale, solar installations are unlikely to launched in the U.S.

In late 2015, the City of San Diego, California made the startling announcement that it hopes to transition to using 100% renewable energy by 2035, while cutting its greenhouse gas emissions in half.  The city also plans to shift one-half of its fleet of vehicles to electric power and to recycle 98% of the methane gas produced by its sewage and water treatment facilities.

The renewable energy sector will continue to evolve rapidly, as new technologies offer breakthroughs and greater efficiencies are reached.  The biggest gains will occur when powerful new batteries are finally developed that make it cost-effective to store solar and wind power where they are produced, for release as needed even when wind or sunlight are not available.



A Representative List of Organizations that Have Used our Research and Products:


I’m amazed at how much information is available and the various ways to access it. This will be a major resource for our serious job seekers.

Career Services, Penn State University

Plunkett Research Online provides a great ‘one stop shop’ for us to quickly come up to speed on major industries. It provides us with an overall analysis of the market, key statistics, and overviews of the major players in the industry in an online service that is fast, easy to navigate, and reliable.

Wendy Stotts, Manager, Carlson Companies

I really appreciate the depth you were able to get to so quickly (for our project). The team has looked through the material and are very happy with the data you pulled together.

Hilton Worldwide, Marketing Manager

We are especially trying to push Plunkett since all of our students have to do so much industry research and your interface is so easy to use.

Library Services, St. John’s College

We are especially trying to push Plunkett’s since all of our students have to do so much industry research and your interface is so easy to use.

Gary White, Business Materials Selector, Penn State University

Your tool is very comprehensive and immensely useful. The vertical marketing tool is very helpful, for it assists us in that venue, as well as targeting customers’ competition for new sales…The comprehensive material is absolutely fabulous. I am very impressed, I have to say!

Tammy Dalton, National Account Manager, MCI

The more I get into the database, the happier I am that we’ll have it–REALLY happy!!! Between the quality and affordability of your product, its appeal to and value for our users, and the inestimably ethical and loyalty-guaranteeing conduct of your business, I will always have more than sufficient praises to sing for Plunkett Research.

Michael Oppenheim, Collections & Reference Services, UCLA

Plunkett Research Online is an excellent resource…the database contains a wealth of useful data on sectors and companies, which is easy to search and well presented. Help and advice on how to conduct, export and save searches is available at all stages.

Penny Crossland, Editor, VIP Magazine
Real Time Web Analytics