Please wait while the search results are loading...

Biotechnology, Drugs & Genetics Business Trends Analysis, Business and Industry Trends Analysis

¹ Video Tip
For our brief video introduction to the Biotech industry, see
Biotechnology can be defined as the use of living organisms (such as bacteria), biological processes or biological systems in order to create a desired end result or end product. Primary markets for biotechnology include: 1) Agriculture, where genetically-modified seeds are now in wide use in many nations. These seeds deliver plants that have much higher crop yields per acre, and often have qualities such as disease-resistance, resistance to herbicides and drought-resistance. 2) The manufacture of enzymes, including enzymes used in food processing and in converting organic matter into ethanol for fuel. 3) Pharmaceuticals, where biotechnology creates such therapies as antibodies, interleukins and vaccines based on living organisms (as opposed to the chemical compounds that make up traditional drugs) that are able to target specific cellular conditions, often with dramatic results and fewer side effects.
Biotechnology is a modern word that describes a very old science. For example, bio-enzymes have always been essential in the production of cheese. The modern difference is that much of the world’s cheese production today utilizes a bio-engineered version of an enzyme called microbial chymosin. This chymosin is made by cloning natural genes into useful bacteria. Another example: For thousands of years, mankind has used naturally-occurring microbes to convert fruit juices into wine.
Analysts at global accounting firm E&Y estimate global biotech industry revenues for publicly-held companies at $123.1 billion in 2014, up from $98.8 billion in 2013 and $89.8 billion in 2012. The firm also estimates that revenues of publicly-held biotech companies in the U.S. alone were $93.1 billion in 2014, up from $71.9 billion in 2013 and $63.7 billion in 2012.
Genetically-engineered drugs, or “biotech” drugs, represent an estimated 10% of the total global prescription drugs market. The U.S. Centers for Medicare & Medicaid Services (CMS) forecast called for prescription drug purchases in the U.S. to total about $309.3 billion during 2015, representing about $1,000 per capita. That projected total is up from only $200 billion in 2005 and a mere $40 billion in 1990.
Estimates of the size of the drugs market vary by source, but it is generally accepted that the global prescription drugs market was more than $1 trillion in 2014. By 2022, American drug purchases alone may top $450 billion, according to the CMS, thanks to a rapidly aging U.S. population, increased access to insurance and the continued introduction of expensive new drugs.
Advanced generations of drugs developed through biotechnology continually enter the marketplace. The results may be very promising for patients, as a technology-driven tipping point of medical care is approaching where drugs that target specific genes and proteins may eventually become widespread. However, it continues to be difficult and expensive to introduce a new drug in the U.S.
According to FDA figures, 41 new molecular entities (NMEs) and new biotech drugs (BLAs) were approved in the U.S. during 2014. These NMEs are novel, new active substances that are categorized differently from “NDAs” or New Drug Applications. NDAs may seek approval for drugs based on combinations of substances that have been approved in the past. Also, a large number of generic drug applications are being approved each year. That is, an application to manufacture a drug that was created as a brand name, and has now lost its patent so that competing firms may seek FDA approval to manufacture it.
New Drug Application Categories
Applications for drug approval by the FDA fall under the following categories:
BLA (Biologics License Application): An application for approval of a drug synthesized from living organisms. That is, they are drugs created using biotechnology. Such drugs are sometimes referred to as biopharmaceuticals.
NME (New Molecular Entity): A new chemical compound that has never before been approved for marketing in any form in the U.S.
NDA (New Drug Application): An application requesting FDA approval, after completion of the all-important Phase III Clinical Trials, to market a new drug for human use in the U.S. The drug may contain active ingredients that were previously approved by the FDA.
Biosimilars (generic biotech drugs): A term used to describe generic versions of drugs that have been created using biotechnology. Because biotech drugs (“biologics”) are made from living cells, a generic version of a drug may not be biochemically identical to the original branded version of the drug. Consequently, they are described as “biosimilars” or “follow-on biologics” to set them apart. 
In Europe, their manufacture and sale has been allowed for some time under special guidelines.   In February 2012, the FDA created guidelines for biosimilars in the U.S. Manufacturers are now able to rely to a large extent on the clinical trials research previously conducted by the maker of the original version of the drug. In early 2015, a Sandoz International biosimilar (a generic version of Amgen’s popular Neupogen) received approval from the FDA and was on track to become the first biosimilar to hit the U.S. market. However, Amgen has been attempting, through the courts, to keep Sandoz from marketing the drug.
Priority Reviews: The FDA places some drug applications that appear to promise “significant improvements” over existing drugs for priority approval, with a goal of returning approval within six months.
Accelerated Approval: A process at the FDA for reducing the clinical trial length for drugs designed for certain serious or life-threatening diseases.
Fast Track Development: An enhanced process for rapid approval of drugs that treat certain life-threatening or extremely serious conditions. Fast Track is independent of Priority Review and Accelerated Approval.
A promising era of personalized medicine is slowly moving closer to fruition. Dozens of exciting new, biotech drugs that target specific genes are either on the market or are very close to regulatory approval.  Many of these drugs are for the treatment of specific forms of cancer. In a few instances, doctors are making treatment decisions based on a patient’s personal genetic makeup. New breakthroughs in genetically targeted drugs occur regularly. An exciting new drug for certain patients who suffer from the skin cancer known as melanoma was approved in the U.S. in 2011. Zelboraf, developed by drug firms Roche Holding and Daiichi Sankyo, will dramatically aid melanoma patients who are shown through genetic tests to have a mutated gene called BRAF. In trials, about 50% of such patients saw their tumors shrink, compared to only 5.5% who received chemotherapy.
Stem cell research is also moving ahead briskly on a global basis. The Obama administration relaxed limitations on federal funding of stem cell research that were established by the preceding administration. In 2009, the National Institutes of Health set new guidelines for funding that will dramatically expand the number of stem cell lines that qualify for research funds from a previous 21 to as many as 700. However, research into certain extremely controversial stem cells, such as those developed via cloning, will not be funded with federal dollars.
Stem cell breakthroughs are occurring rapidly. There is truly exciting evidence of the potential for stem cells to treat many problems, from cardiovascular disease to neurological disorders.
A handful of doctors around the world are now collecting a human patient’s stem cells, cultivating them in a laboratory and reinjecting them into the patient. Many claim dramatic results from this method, in treatment of spine and joint problems, cardiac disease and other conditions. The procedure can cost thousands of dollars and remains experimental. Noted Americans who recently used this procedure include Governor Rick Perry of Texas and New York Yankees baseball team pitcher Bartolo Colon.
Despite exponential advances in biopharmaceutical knowledge and technology, biotech companies enduring the task of getting new drugs to market continue to face long timeframes, daunting costs and immense risks. By one count, of every 1,000 experimental drug compounds in some form of pre-clinical testing, only one actually makes it to clinical trials. Then, only one in five of those drugs make it to market. Of the drugs that get to market, only one in three bring in enough revenue to recover their costs. Meanwhile, the patent expiration clock is ticking—soon enough, manufacturers of generic alternatives steal market share from the firms that invested all that time and money in the development of the original drug.
Global Factors Boosting Biotech Today:
1)    A rapid aging of the population in nations including the EU, much of Asia and the U.S., such as approximately 74 million surviving Baby Boomers in America who are entering senior years in rising numbers and require a growing level of health care.
2)    A renewed, global focus on developing effective vaccines.
3)    Major pharmaceuticals firms paying top prices to acquire young biotech drug companies that own promising drugs.
4)    A growing global dependence on genetically-engineered agricultural seeds (“Agribio”), with farmers in dozens of nations planting genetically modified seeds.
5)    Aggressive investment in biotechnology research in Singapore, China and India, often with government sponsorship—for example, Singapore’s massive Biopolis project.
6)    Very promising research into synthetic biology.
7)    Dramatic decreases in the cost of personal genetic studies, which is a big boost to personalized medicine and immunotherapy.
8)    Highly advanced biotech technologies known as gene therapies are slowly beginning to prove their ability to cure patients.
9)    Rapid growth in the overall prescription drug markets in developing nations.
10)An increased focus on the discovery and manufacture of new drugs (“orphan drugs”) that impact rare diseases or relatively small portions of the population.
Source: Plunkett Research, Ltd.
Internet Research Tip:
You can review current and historical drug approval reports at the following page at the FDA.
The FDA regulates biologic products for use in humans. It is a source of a broad variety of data on drugs, including vaccines, blood products, counterfeit drugs, exports, drug shortages, recalls and drug safety.
The FDA is attempting to help the drug industry bring the most vital drugs to market in shorter time with four programs: Fast Track, Priority Review, Breakthrough Therapy Designation and Accelerated Approval. The benefits of Fast Track include scheduled meetings to seek FDA input into development as well as the option of submitting a New Drug Application in sections rather than submitting all components at once. The Fast Track designation is intended for drugs that address an unmet medical need, but is independent of Priority Review, Breakthrough Therapy Designation and Accelerated Approval. Priority drugs are those considered by the FDA to offer improvements over existing drugs or to offer high therapeutic value. The priority program, along with increased budget and staffing at the FDA, is having a positive effect on total approval times for new drugs. Breakthrough therapies show early clinical evidence of very important improvements over currently available drugs.
The FDA quickly approved Novartis’ new drug Gleevec (a revolutionary and highly effective treatment for patients suffering from chronic myeloid leukemia). After priority review and Fast Track status, it required only two and one-half months in the approval process. This rapid approval, which enabled the drug to promptly begin saving lives, was possible because of two factors aside from the FDA’s cooperation. First, Novartis mounted a targeted approach to this niche disease. Its research determined that a specific genetic malfunction causes the disease, and its drug specifically blocks the protein that causes the genetic malfunction. Next, thanks to its use of advanced genetic research techniques, Novartis was so convinced of the effectiveness of this drug that it invested heavily and quickly in its development.
Key Food & Drug Administration (FDA) terms relating to human clinical trials:
Phase I—Small-scale human trials to determine safety. Typically include 20 to 60 patients and are six months to one year in length.
Phase II—Preliminary trials on a drug’s safety/efficacy. Typically include 100 to 500 patients and are one and a half to two years in length.
Phase III—Large-scale controlled trials for efficacy/safety; also the last stage before a request for approval for commercial distribution is made to the FDA. Typically include 1,000 to 7,500 patients and are three to five years in length.
Phase IV—Follow-up trials after a drug is released to the public.
Generally, Fast Track approval is reserved for diseases that are life-threatening and have no current therapies, such as rare forms of cancer. However, new policies are setting the stage for accelerated approval of drugs for less deadly but more pervasive conditions such as diabetes and obesity. Approval is also being made easier by the use of genetic testing to determine a drug’s efficacy, as well as the practice of drug companies working closely with federal organizations. Examples of these new policies are exemplified in the approval of Iressa, which helps fight certain types of cancer in only 10% of patients but is associated with a genetic marker that can help predict a patient’s receptivity; and VELCADE, a cancer drug that received initial approval in only four months because the company that makes it worked closely with the National Cancer Institute to review trials.
Personal genetic codes are becoming less expensive and more widely attainable. Today, the cost of decoding the most important sections of the human genome for an individual patient has dropped dramatically.
Although total drug expenditures are currently small in developing nations such as India, China and Brazil, they have tremendous potential over the mid-term. This means that major international drug makers will be expanding their presence in these nations. However, it also means that local drug manufacturers have tremendous incentive to invest in research and marketing.
The Coming BioIndustrial Era:
Some of the most exciting developments in the world of technology today are occurring in the biotech sector. These include advances in agricultural biotechnology, the convergence of nanotechnology and information technology with biotech and breakthroughs in synthetic biotechnology.
The rapidly growing worldwide base of biotechnology knowledge has the potential to create a new “bioindustrial era.” For example, scientists’ ability to capture refinable-oils from algae and other organisms (organisms that remove carbon from the atmosphere as they grow) may eventually create a new source of transportation fuel. Oil industry giant ExxonMobil is backing research in this regard at Synthetic Genomics, Inc. with hundreds of millions of dollars.
The use of enzymes in industrial processes may enable us to bio-engineer a long list of highly desirable substances at modest cost. The end result could easily be a lower carbon footprint for many industrial processes, less industrial and residential waste to deal with and a significant increase in yields in chemicals, coatings, food and other vital sectors. DuPont’s 2011 acquisition of global enzyme leader Danisco is a good indicator of the looming era of bioindustrial advancements, as DuPont made a $5.8 billion bet that it can help a vast variety of manufacturers to achieve significant product enhancements and efficiencies.
Source: Plunkett Research, Ltd.
Significant ethical issues face the biotech industry as it moves forward. They include, for example, the ability to determine an individual’s likelihood to develop a disease in the future, based on his or her genetic makeup today; the potential to harvest replacement organs and tissues from animals or from cloned human genetic material; and the ability to genetically alter the basic foods that we eat. These are only a handful of the powers of biotechnology that must be dealt with by society. Watch for intense, impassioned discussion of such issues and a raft of governmental regulation as new technologies and therapies emerge.
The biggest single issue may be privacy. Who should have access to your personal genetic records? Where should they be stored? How should they be accessed? Can you be denied employment or insurance coverage due to your genetic makeup?
Internet Research Tip:
For the latest biotech developments check out, a private sector portal for the biotech community, and, the web site of the highly regarded Biotechnology Industry Organization.

A Representative List of Organizations that Have Used our Research and Products:


I’m amazed at how much information is available and the various ways to access it. This will be a major resource for our serious job seekers.

Career Services, Penn State University

Plunkett Research Online provides a great ‘one stop shop’ for us to quickly come up to speed on major industries. It provides us with an overall analysis of the market, key statistics, and overviews of the major players in the industry in an online service that is fast, easy to navigate, and reliable.

Wendy Stotts, Manager, Carlson Companies

I really appreciate the depth you were able to get to so quickly (for our project). The team has looked through the material and are very happy with the data you pulled together.

Hilton Worldwide, Marketing Manager

We are especially trying to push Plunkett since all of our students have to do so much industry research and your interface is so easy to use.

Library Services, St. John’s College

We are especially trying to push Plunkett’s since all of our students have to do so much industry research and your interface is so easy to use.

Gary White, Business Materials Selector, Penn State University

Your tool is very comprehensive and immensely useful. The vertical marketing tool is very helpful, for it assists us in that venue, as well as targeting customers’ competition for new sales…The comprehensive material is absolutely fabulous. I am very impressed, I have to say!

Tammy Dalton, National Account Manager, MCI

The more I get into the database, the happier I am that we’ll have it–REALLY happy!!! Between the quality and affordability of your product, its appeal to and value for our users, and the inestimably ethical and loyalty-guaranteeing conduct of your business, I will always have more than sufficient praises to sing for Plunkett Research.

Michael Oppenheim, Collections & Reference Services, UCLA

Plunkett Research Online is an excellent resource…the database contains a wealth of useful data on sectors and companies, which is easy to search and well presented. Help and advice on how to conduct, export and save searches is available at all stages.

Penny Crossland, Editor, VIP Magazine
Real Time Web Analytics